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Abstract. In the universal seesaw mass-matrix model, which is a promising model for the unified description
of the quark and lepton mass matrices, the behaviors of the gauge coupling constants and intermediate
energy scales in the SO(10)L ×SO(10)R model are investigated in relation to the neutrino-mass generation
scenarios. The unification of the gauge coupling constants in the framework of the non-SUSY model is
possible if the SO(10) symmetry is broken via Pati–Salam-type symmetries.

1 Introduction

Recently, considerable interest [1–5] in the universal see-
saw mass-matrix model [6] has revived, this being a uni-
fied mass-matrix model of the quarks and leptons. First
suggested by the seesaw mechanism for neutrinos [7], the
model was then proposed in order to understand the ques-
tion why the masses of quarks (except for the top quark)
and charged leptons are so small compared with the elec-
troweak scale ΛL (∼ 102 GeV). The model has hypothet-
ical fermions Fi in addition to the conventional quarks
and leptons fi (flavors f = u, d, ν, e; family indices i =
1, 2, 3), and they are assigned to fL = (2, 1), fR = (1, 2),
FL = (1, 1) and FR = (1, 1) of SU(2)L× SU(2)R. The 6
× 6 mass matrix which is sandwiched between the fields
(fL, FL) and (fR, FR) is given by

M6×6 =

(
0 mL

mR MF

)
, (1.1)

where mL and mR are universal for all fermion sectors
(f = u, d, ν, e) and only the MF have structures depen-
dent on the flavors f . For ΛL < ΛR � ΛS, where ΛL =
O(mL), ΛR = O(mR) and ΛS = O(MF ), the 3 × 3 mass
matrix Mf for the fermions f is given by the well-known
seesaw expression

Mf ' −mLM−1
F mR. (1.2)

However, after the observation [8] of the heavy top quark
mass mt ∼ ΛL, the model at one stroke became embar-
rassed, because the observed fact mt ∼ O(mL) means
O(M−1

F mR) ∼ 1. This problem was recently solved by
Fusaoka and the author [1], and later by Morozumi et
al. [2]. If we can build a model with detMF = 0 for
the up-quark sector (F = U), one of the fermion masses
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m(Ui) is zero [say, m(U3) = 0], so that the seesaw mecha-
nism does not work for the third family, i.e., the fermions
(u3L, U3R) and (u3R, U3L) acquire masses of order O(mL)
and O(mR), respectively. We identify (u3L, U3R) as the
top quark (tL, tR). Thus, we can understand the question
why only the top quark has a mass of the order of ΛL. Of
course, we can successfully describe [1] the quark masses
and mixings in terms of the charged-lepton masses by as-
suming simple structures for mL, mR and MF . The model
also gives an interesting phenomenology for neutrinos [3].

In spite of such phenomenological success, there is re-
luctance to accept the model, because the model needs
extra fermions F . In most unification models, there is no
room for the fermions F . For example, it has been found
[4] that when the gauge symmetries SU(2)L×SU(2)R×
U(1)Y ×SU(3)c are embedded into the Pati–Salam-type
[9] unification SO(10) → SU(2)L×SU(2)R×SU(4)PS, those
gauge coupling constants are unified at µ = ΛX ' 6 ×
1017 GeV [SU(4) is broken into U(1)Y ×SU(3)c at µ =
ΛR ' 5 × 1012 GeV]. However, in the SO(10) model there
is no representation which offers suitable entries for the
fermions FL/R = (1, 1, 4)L/R of SU(2)L×SU(2)R×SU(4)PS.
Whether we can built a unification model in which the
fermions F are reasonably embedded will be a touchstone
for the future of the universal seesaw mass-matrix model.

There is an idea which might offer a solution to this
problem [10]. We may consider the fermions F c

R (≡ CF
T
R)

together with the fermions fL to belong to 16 of SO(10),
and also F c

L together with fR to belong to 16 of another
SO(10), i.e.,

(fL + F c
R) ∼ (16, 1), (fR + F c

L) ∼ (1, 16), (1.3)

of SO(10)L×SO(10)R. The symmetries are broken into
SU(2)L×SU(2)R×U(1)Y ×SU(3)c at µ = ΛS and the fer-
mions F have a mass term FLMF FR.

In order to examine the idea of (1.3), in the present
paper we investigate the evolution of the gauge coupling
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constants on the basis of the SO(10)L×SO(10)R model
and estimate the intermediate energy scales ΛR and ΛS
together with the unification energy scale ΛX. As regards
the numerical results, we are particularly interested in
the value of κ ≡ ΛR/ΛL, because this value is closely
related to the neutrino-mass generation scenarios, as we
discuss in the next section. The evolutions of the gauge
coupling constants under SO(10)L×SO(10)R symmetries
have already been analyzed by Davidson, Wali and Cho
[10], but their symmetry-breaking patterns are somewhat
different from that in the present model. We will inves-
tigate the possible intermediate energy scales under the
constraint ΛR/ΛS ' 0.02 [1] as derived from the observed
ratio mt/mc in the new scenario of the universal seesaw
model [1,2], where the masses mt and mc are given by
mt ∼ ΛL and mc ∼ (ΛR/ΛS)ΛL, respectively.

In Sect. 3, we investigate the case of the symmetry
breaking SO(10)L×SO(10)R → [SU(5)×U(1)′]L×[SU(5)×
U(1)′]R. We will see that we should rule out this case, be-
cause the results are inconsistent with the observed values
of the gauge coupling constants at µ = mZ . In Sect. 4,
we investigate the case SO(10)L × SO(10)R → [SU(2) ×
SU(2)′ × SU(4)]L × [SU(2) × SU(2)′ × SU(4)]R. We will
conclude that this case is allowed for the intermediate en-
ergy scale ΛR ∼ (101 − 106) GeV if we accept a model
with ΛXL 6= ΛXR, where ΛXL and ΛXR are the unifica-
tion scales of SO(10)L and SO(10)R, respectively. Finally,
Sect. 5 will be devoted to conclusions and final remarks.

2 Neutrino mass matrix

In the universal seesaw mass-matrix model, the most gen-
eral form of the neutrino-mass matrix which is sandwiched
between (νL, νc

R, NL, N
c

R) and (νc
L, νR, N c

L, NR)T is given
by

M12×12 =




0 0 m′
L mL

0 0 mT
R m′T

R

m′T
L mR MR MD

mT
L m′

R MT
D ML


 , (2.1)

under the broken SU(2)L × SU(2)R × U(1)Y symmetries.
Here, we have denoted the Majorana mass terms of the
fermions F c

L and F c
R as MR and ML, respectively, be-

cause the fermions FL and FR are members of (1, 16∗)
and (16∗, 1) of SO(10)L×SO(10)R, respectively. The mass
terms fLmLFR and FLmRfR are generated, for example,
by the Higgs scalars (126, 1) and (1, 126∗) of SO(10)L ×
SO(10)R, respectively, while the mass terms fLm′

LF c
L and

F
c

Rm′
RfR must be generated by Higgs scalars of the type

(16, 16∗) of SO(10)L × SO(10)R. Therefore, in the present
model we do not consider the terms m′

L and m′
R, i.e., we

take m′
L = m′

R = 0. (For the special case with m′
L ' mL

and m′
R ' mR, see [11].) Hereafter, we assume mL �

mR � MF .
We are interested in a mass matrix for the left-handed

neutrino states νL. By using the seesaw approximation for

the matrix (2.1), we obtain the 6 × 6 mass matrix for the
approximate (νc

L, νR) states,

M6×6 ' −
(

0 mL

mT
R 0

)(
MR MD

MT
D ML

)−1(
0 mR

mT
L 0

)

= −
(

mLM−1
22 mT

L mLM−1
21 mR

mT
RM−1

12 mT
L mT

RM−1
11 mR

)
, (2.2)

where (
MR MD

MT
D ML

)−1

=

(
M−1

11 M−1
12

M−1
21 M−1

22

)
(2.3)

M11 = MR − MDM−1
L MT

D , M22 = ML − MT
DM−1

R MD,
(2.4)

M12 = MT
21 = MT

D − MLM−1
D MR.

Corresponding to the cases (a) ML, MR � MD, (b) ML,
MR ∼ MD and (c) ML, MR � MD, we obtain the follow-
ing mass matrix for the approximate νL states.

(a) The case ML, MR � MD

From M11 ' MR, M22 ' ML and M12 ' −MLM−1
D MR,

we obtain

M6×6 '
(

−mLM−1
L mT

L mLM−1
L MT

DM−1
R mR

mT
RM−1

R MDM−1
L mT

L −mT
RM−1

R mR

)
,

(2.5)
so that we get the mass matrix for the approximate νL
states,

M(νL) ' −mLM−1
L mT

L , (2.6)

because of (M6×6)11, (M6×6)22 � (M6×6)12.

(b) The case ML, MR ∼ MD

We consider the case

det

(
MR MD

MT
D ML

)
6= 0. (2.7)

(The special case that the determinant is zero has been
discussed in [3].) Since we consider the case mL � mR,
we can use the seesaw approximation for the expression
(2.2), so that we obtain

M(νL) ' −mLM−1
22 mT

L

+ mLM−1
21 mR(mT

RM−1
11 mR)−1mT

RM−1
12 mT

L

= −mL(M−1
22 − M−1

21 M11M
−1
12 )mT

L

= −mLM−1
L mT

L , (2.8)

where we have used the relation ML = (M−1
22 − M−1

21 M11

·M−1
12 )−1 in the inverse expression of (2.3). Thus, we ob-

tain the expression (2.6) for the case (b), too. Note that
the 3 × 3 mass matrix for the approximate νL states is
almost independent of the structures of MD and MR in
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spite of O(ML) ∼ O(MD) ∼ O(MR).

(c) The case ML, MR � MD

From M11 ' −MDM−1
L MT

D , M22 ' −MT
DM−1

R MD

and M12 ' MT
D , we obtain the mass matrix

M6×6 '
(

mLM−1
D MRMT−1

D mT
L −mLM−1

D mR

−mRMT−1
D mT

L mT
RMT−1

D MLM−1
D mR

)
.

(2.9)
The mass matrix gives three light pseudo-Dirac neutrino
states [12] νpsD

i± ' (νiL ± νc
iR)/

√
2 (i = e, µ, τ), because

(M6×6)11, (M6×6)22 � (M6×6)12. This case has been dis-
cussed by Bowes and Volkas [13]. It is very attractive phe-
nomenologically, because the maximal mixing state be-
tween νµL and νµR can give a natural explanation for the
recent atmospheric neutrino data [15]. The mass matrix
M(νpsD

± ) in the limit of m(νpsD
i+ ) = m(νpsD

i− ) is approxi-
mately given by

M(νpsD
± ) ' −mLM−1

D mR. (2.10)

First, we suppose the following symmetry-breaking
pattern (hereafter, we will refer to this as case (A)):

SO(10)L × SO(10)R

↓ µ = ΛX10

[SU(5) × U(1)′]L × [SU(5) × U(1)′]R

↓ µ = ΛN

SU(5)L × SU(5)R
↓ µ = ΛX5

[SU(3) × SU(2) × U(1)]L × [SU(3) × SU(2) × U(1)]R

↓ µ = ΛS

SU(3)c × SU(2)L × SU(2)R × U(1)Y

↓ µ = ΛR

SU(3)c × SU(2)L × U(1)Y ′

↓ µ = ΛL

SU(3)c × U(1)em. (2.11)

At the energy scale µ = ΛN, the gauge symmetries U(1)′
L×

U(1)′
R are completely broken, so that the neutral leptons

NL and NR acquire Dirac and Majorana masses of the
order of ΛN. At µ = ΛS, the remaining fermions FL and
FR (except for U3L and U3R) acquire masses of the order of
ΛS by Higgs bosons Φ (as we discuss in the next section),
and SU(3)L × SU(3)R and U(1)L × U(1)R are broken into
SU(3)L+R ≡ SU(3)c and U(1)L+R ≡ U(1)Y , respectively.
If scenario (A) is correct, the mass matrices ML, MR and
MD are of the order of ΛN, so that we suppose that the
order of the neutrino masses m(νi) is given by

m(νi) ∼ Λ2
L/ΛN ∼ (ΛLΛS/ΛRΛN)m(ei), (2.12)

from the result (2.8) in case (b), the neutrino masses are
suppressed by a factor (ΛL/ΛR) (ΛS/ΛN) as compared
with the charged-lepton masses m(ei).

Next, we can suppose another symmetry breaking (case
(B)):

SO(10)L × SO(10)R
↓ µ = ΛX

[SU(2) × SU(2)′ × SU(4)]L × [SU(2) × SU(2)′ × SU(4)]R

↓ µ = ΛS

SU(2)L × SU(2)R × U(1)Y × SU(3)c
↓ µ = ΛR

SU(3)c × SU(2)L × U(1)Y ′

↓ µ = ΛL

SU(3)c × U(1)em. (2.13)

If scenario (B) is true, since ML ∼ MR ∼ MD ∼ MS, we
suppose

m(νi) ∼ Λ2
L/ΛS ∼ (ΛL/ΛR)m(ei), (2.14)

so that the neutrino masses m(νi) are suppressed by a
factor ΛL/ΛR as compared with the charged-lepton masses
m(ei).

It is of great interest to estimate the possible values of
such intermediate energy scales ΛR, ΛS, and so on.

Although the Bowes–Volkas model [13] is very interest-
ing, this model cannot apply in the universal seesaw model
based on the SO(10)L × SO(10)R unification, because the
case ML, MR � MD is not likely in the SO(10)L×SO(10)R
model, and, if it would be adequate, the relation (2.10)
leads to the wrong prediction m(νi) ∼ m(ei) for MD ≡
MN ∼ MF (F 6= N).

3 Case of SO(10) → SU(5) × U(1)

In the present section, we investigate case (A) with the
symmetry-breaking pattern (2.11). At the energy scale
µ = ΛS, the symmetries [SU(3)×SU(2)×U(1)]L×[SU(3)×
SU(2)×U(1)]R are broken into SU(3)c ×SU(2)L ×U(1)Y
by the following Higgs scalars ΦY :

Φ2/3 ∼ (3∗, 1; 3, 1)Y =2/3, Φ4/3 ∼ (3, 1; 3∗, 1)Y =4/3, (3.1)

Φ2 ∼ (1, 1; 1, 1)Y =2,

of [SU(3) × SU(2)]L × [SU(3) × SU(2)]R, where SU(3)c ≡
SU(3)L+R,U(1)Y ≡ U(1)L+R and Y = YL = YR. Our
interest is in the region ΛL < µ ≤ ΛX5. Hereafter, we call
the range ΛL < µ ≤ ΛR, ΛR < µ ≤ ΛS and ΛS < µ ≤ ΛX5
range I, II and III, respectively.

The electric charge operator Q is given by

Q = IL
3 +

1
2
Y ′ (Range I), (3.2)

1
2
Y ′ = IR

3 +
1
2
Y (Range II), (3.3)
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1
2
Y =

1
2
YL +

1
2
YR (Range III). (3.4)

We denote the gauge coupling constants corresponding to
the operators Q, Y ′, Y , YL, YR, IL and IR by gem ≡ e,
g′
1, g1, g1L, g1R, g2L and g2R, respectively. The boundary

conditions for these gauge coupling constants at µ = ΛL,
µ = ΛR and µ = ΛS are as follows:

α−1
em(ΛL) = α−1

2L (ΛL) +
5
3
α′−1

1 (ΛL), (3.5)

5
3
α′−1

1 (ΛR) = α−1
2R(ΛR) +

2
3
α−1

1 (ΛR), (3.6)

and
2
3
α−1

1 (ΛS) =
5
3
α−1

1L (ΛS) +
5
3
α−1

1R(ΛS), (3.7)

respectively, corresponding to (3.2), (3.3) and (3.4), where
αi ≡ g2

i /4π and the normalizations of the U(1)Y ′ , U(1)Y ,
U(1)YL and U(1)YR gauge coupling constants have been
taken as they satisfy α′

1 = α2L = α3, α1L = α2L = α3L
and α1R = α2R = α3R in the SU(5) grand-unification limit
and α1 = α3 ≡ α4 in the SU(4) unification limit [α4 =
α2L = α2R in the SO(10) unification limit], respectively.
We also have the following boundary conditions at µ = ΛS
and µ = ΛX5:

α−1
3 (ΛS) = α−1

3L (ΛS) + α−1
3R(ΛS), (3.8)

α−1
1L (ΛX5L) = α−1

2L (ΛX5L) = α−1
3L (ΛX5L), (3.9)

α−1
1R(ΛX5R) = α−1

2R(ΛX5R) = α−1
3R(ΛX5R), (3.10)

where, for convenience, we distinguish the unification scale
of SU(5)L, ΛX5L, from that of SU(5)R, ΛX5R.

The evolutions of the gauge coupling constants gi at
one loop are given by the equations

d
dt

αi(µ) = − 1
2π

biα
2
i (µ) , (3.11)

where t = lnµ. Since the quantum numbers of the fermions
f and F are assigned as in Table 1, the coefficients bi are as
given in Table 2. In the model with detMU = 0, the heavy
fermions FL and FR except for U3L and U3R are decoupled
for µ ≤ ΛS, and the fermions u3R and U3L are decoupled
for µ ≤ ΛR. In Table 2, we have also shown the values of bi

for the conventional case without the constraint detMU =
0 in parentheses.

By substituting α−1
2L (ΛX5L) = α−1

3L (ΛX5L) with the re-
lations at one loop

α−1
2L (ΛX5L) = α−1

2L (ΛS) + bIII
2L

1
2π

ln
ΛX5L

ΛS
, (3.12)

α−1
3L (ΛX5L) = α−1

3L (ΛS) + bIII
3L

1
2π

ln
ΛX5L

ΛS
, (3.13)

we obtain

α−1
3L (ΛS)−α−1

2L (ΛS)+ (bIII
3L − bIII

2L)
1
2π

ln
ΛX5L

ΛS
= 0. (3.14)

Table 1. Quantum numbers of the fermions f and F and Higgs
scalars φL, φR and Φ for SU(2)L × SU(2)R × U(1)Y

IL
3 IR

3 Y IL
3 IR

3 Y

uL + 1
2 0 1

3 uR 0 + 1
2

1
3

dL − 1
2 0 1

3 dR 0 − 1
2

1
3

νL + 1
2 0 −1 νR 0 + 1

2 −1
eL − 1

2 0 −1 eR 0 − 1
2 −1

UL 0 0 4
3 UR 0 0 4

3

DL 0 0 − 2
3 DR 0 0 − 2

3

NL 0 0 0 NR 0 0 0
EL 0 0 −2 ER 0 0 −2
φ+

L + 1
2 0 1 φ+

R 0 + 1
2 1

φ0
L − 1

2 0 1 φ0
R 0 − 1

2 1

Similarly, from the condition α−1
1L (ΛX5L) = α−1

2L (ΛX5L) we
obtain

α−1
2L (ΛS)−α−1

1L (ΛS)+ (bIII
2L − bIII

1L)
1
2π

ln
ΛX5L

ΛS
= 0. (3.15)

By eliminating ln(ΛX5L/ΛS) from (3.14) and (3.15), we
obtain

(bIII
2L − bIII

1L)α−1
3L (ΛS) + (bIII

3L − bIII
2L)α−1

1L (ΛS) (3.16)

− (bIII
3L − bIII

1L)α−1
2L (ΛS) = 0.

Similarly, we obtain

(bIII
2R − bIII

1R)α−1
3R(ΛS) + (bIII

3R − bIII
2R)α−1

1R(ΛS) (3.17)

− (bIII
3R − bIII

1R)α−1
2R(ΛS) = 0.

Therefore, from the relations (3.7), (3.8) and bIII
iL = bIII

iR ≡
bIII
i , we obtain

(bIII
2 − bIII

1 )α−1
3 (ΛS) + (bIII

3 − bIII
2 )α−1

1 (ΛS)

−(bIII
3 − bIII

1 )
[
α−1

2L (ΛS) + α−1
2R(ΛS)

]
= 0, (3.18)

which leads to[
3
5
(bIII

3 − bIII
2 ) + (bIII

3 − bIII
1 )
]

α−1
2R(ΛR)

−
[
bII
3 (bIII

2 − bIII
1 ) +

2
5
bII
1 (bIII

3 − bIII
2 )

−2bII
2 (bIII

3 − bIII
1 )
] 1
2π

ln
ΛS

ΛR

−[bI
3(b

III
2 − bIII

1 ) + bI
1(b

III
3 − bIII

2 )

−bI
2(b

III
3 − bIII

1 )
] 1
2π

ln
ΛR

ΛL

= (bIII
2 − bIII

1 )α−1
3 (ΛL) + (bIII

3 − bIII
2 )α′−1

1 (ΛL)

−(bIII
3 − bIII

1 )α−1
2L (ΛL). (3.19)
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Table 2. Coefficients in the evolution equations of the gauge coupling constants. Cases
(A) and (B) are the cases with the symmetry-breaking patterns SO(10) → SU(5) × U(1)
and SO(10) → SU(2) × SU(2) × SU(4); they are discussed in Sects. 3 and 4, respectively

ΛL < µ ≤ ΛR ΛR < µ ≤ ΛS ΛS < µ ≤ ΛX

Case A Case B

SU(3)c bI
3 = 7 bII

3 = 19/3 (7)

{
bIII
3L = 6

bIII
3R = 6

{
bIII
4L = 7

bIII
4R = 7

SU(2)L bI
2L = 19/6 bII

2L = 19/6 (19/6) bIII
2L = 19/6 bIII

2L = 19/6

SU(2)R bII
2R = 19/6 (19/6) bIII

2R = 19/6 bIII
2R = 19/6

U(1)Y

bI
1 = −41/10

bII
1 = −43/6 (−9/2)

{
bIII
1L = −53/10

bIII
1R = −53/10

{
b′
2L = −13/6

b′
2R = −13/6

For the model with detMU = 0, the relation (3.19) be-
comes

13α−1
2R(ΛR) +

391
15

1
2π

ln
ΛS

ΛR
− 178

15
1
2π

ln
ΛR

ΛL

=
127
15

α−1
3 (ΛL) +

17
6

α′−1
1 (ΛL) − 113

30
α−1

2L (ΛL). (3.20)

The right-hand side of (3.20) gives the value −97.82 for
the input values α′

1(mZ) = 0.01683, αL(mZ) = 0.03349
and α3(mZ) = 0.1189 [14], where, for convenience, we
have used the initial values at µ = mZ instead of those
at µ = ΛL. The relation (3.20) puts a lower bound on
the ratio ΛR/ΛL: For α−1

2R(ΛR) ≥ 1, we obtain ΛR/ΛL ≥
2× 10135 (for ΛS/ΛR = 50 [1]) and ΛR/ΛL ≥ 3× 1022 (for
ΛS/ΛR ≥ 1). Such a large value of ΛR/ΛL is physically
unlikely, so that case (A) is ruled out.

By a discussion similar to that of relation (3.19), it
turns out that the conclusion that case (A) is ruled out
is still unchanged for the model without the condition
detMU = 0 and also for the minimal SUSY version of
the present model.

4 Case of SO(10) → SU(2)×SU(2)×SU(4)

Next, we investigate case (B), SO(10)L×SO(10)R→ [SU(2)
×SU(2)′ × SU(4)]L × [SU(2) × SU(2)′ × SU(4)]R. At the
energy scale µ = ΛS, the symmetries [SU(2)′ × SU(4)]L ×
[SU(2)′ × SU(4)]R are broken into U(1)Y × SU(3)c by the
Higgs scalars

ΦV ∼ (1, 2, 4; 1, 2, 4),
ΦL ∼ (1, 1, 10; 1, 1, 1),
ΦR ∼ (1, 1, 1; 1, 1, 10),

(4.1)

of [SU(2)×SU(2)′ ×SU(4)]L × [SU(2)×SU(2)′ ×SU(4)]R,
where the Higgs scalars ΦV, ΦL and ΦR generate the masses
MF , ML and MR, respectively. In the present section, we
call the ranges ΛL < µ ≤ ΛR, ΛR < µ ≤ ΛS and ΛS <
µ ≤ ΛX ranges I, II and III, respectively.

The electric-charge operator Q is given by (3.2) and
(3.3) in the ranges I and II, respectively, but the relation
(3.4) is replaced by

1
2
Y = I ′L

3 +
1
2
YL + I ′R

3 +
1
2
YR, (4.2)

so that the boundary condition (3.7) is replaced by

2
3
α−1

1 (ΛS) = α′−1
2L (ΛS)+

2
3
α−1

1L (ΛS)+α′−1
2R (ΛS)+

2
3
α−1

1R(ΛS).

(4.3)
The boundary conditions at µ = ΛS and µ = ΛX are as
follows:

α−1
3 (ΛS) = α−1

3L (ΛS) + α−1
3R(ΛS), (4.4)

α−1
1L (ΛS) = α−1

3L (ΛS) = α−1
4L (ΛS), (4.5)

α−1
1R(ΛS) = α−1

3R(ΛS) = α−1
4R(ΛS), (4.6)

α−1
2L (ΛXL) = α′−1

2L (ΛXL) = α−1
4L (ΛXL), (4.7)

α−1
2R(ΛXR) = α′−1

2R (ΛXR) = α−1
4R(ΛXR), (4.8)

where, for convenience, we have again distinguished the
unification scale of SO(10)L, ΛXL, from that of SO(10)R,
ΛXR.

Since b′III
2L = b′III

2R ≡ b′III
2 6= bIII

2L = bIII
2R ≡ bIII

2 , we
obtain

α′−1
2L (ΛS) − α−1

2L (ΛS) = (b′III
2L − bIII

2L)
1
2π

ln
ΛS

ΛXL
, (4.9)

α′−1
2R (ΛS) = α−1

2R(ΛS) = (b′III
2R − bIII

2R)
1
2π

ln
ΛS

ΛXR
, (4.10)

i.e.,
α′−1

2L (ΛS) + α′−1
2R (ΛS)

= α−1
2L (ΛS) + α−1

2R(ΛS) + 2(bIII
2 − b′III

2 )
1
2π

ln
ΛX

ΛS
, (4.11)

where ΛX = (ΛXLΛXR)1/2. On the other hand, from (4.3)–
(4.6), we obtain

α−1
3 (ΛS) +

3
2
[
α′−1

2L (ΛS) + α′−1
2R (ΛS)

]− α−1
1 (ΛS) = 0,

(4.12)
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so that

α−1
3 (ΛS) +

3
2
[
α−1

2L (ΛS) + α−1
2R(ΛS)

]
−α−1

1 (ΛS) + 3(bIII
2 − b′III

2 )
1
2π

ln
ΛX

ΛS
= 0. (4.13)

Similarly, from (4.7), we obtain

α−1
3L (ΛS) − α−1

2L (ΛS) + (bIII
4L − bIII

2L)
1
2π

ln
ΛXL

ΛS
= 0, (4.14)

so that, together with the equation with (L → R) in (4.14),
we obtain

α−1
3 (ΛS) − [α−1

2L (ΛS) + α−1
2R(ΛS)

]
+2(bIII

4 − bIII
2 )

1
2π

ln
ΛX

ΛS
= 0. (4.15)

By eliminating ΛX/ΛR from (4.13) and (4.15), we obtain

c3 α−1
3 (ΛS) + c2

[
α−1

2L (ΛS) + α−1
2R(ΛS)

]− c1 α−1
1 (ΛS) = 0,

(4.16)
where

c1 = bIII
4 − bIII

2 , (4.17)

c2 =
3
2
(bIII

4 − b′III
2 ), (4.18)

c3 = bIII
4 − bIII

2 − 3
2
(bIII

2 − b′III
2 ). (4.19)

Since

α−1
1 (ΛS) =

5
2
α−1

1 (ΛL) − 3
2
α−1

2R(ΛR)

+ bII
1

1
2π

ln
ΛS

ΛR
+

5
2
bII
1

1
2π

ln
ΛR

ΛL
, (4.20)

α−1
2L (ΛS) = α−1

2L (ΛL) + bII
2

1
2π

ln
ΛS

ΛR
+ bI

2
1
2π

ln
ΛR

ΛL
, (4.21)

α−1
2R(ΛS) = α−1

2L (ΛR) + bII
2

1
2π

ln
ΛS

ΛR
, (4.22)

α−1
3 (ΛS) = α−1

3 (ΛL) + bII
3

1
2π

ln
ΛS

ΛR
+ bI

3
1
2π

ln
ΛR

ΛL
, (4.23)

the relation (4.16) leads to the constraint for ΛR/ΛL:

0 =
(

c2 +
3
2
c1

)
α−1

2R(ΛR)

+ (c3b
II
3 + 2c2b

II
2 − c1b

II
1 )

1
2π

ln
ΛS

ΛR

+
(

c3b
I
3 + c2b

I
2 − 5

2
bI
1

)
1
2π

ln
ΛR

ΛL

+ c3α
−1
3 (ΛL) + c2α

−1
2L (ΛL) − 5

2
α−1

1 (ΛL)

= 19.5 α−1
2R(ΛR) + 19.67 log

ΛR

ΛL

+ 32.31 log
ΛS

ΛR
− 193.96, (4.24)

Table 3. Intermediate mass scales ΛR and ΛS versus α−1
2R(ΛR)

in the case of SO(10) → SU(2)×SU(2)×SU(4). As input values
ΛR/ΛS = 0.02 and ΛL = mZ = 91.2GeV are used. The upper
and lower rows of ΛXR and ΛXL correspond to the values of
α−1

4R(ΛS) = 1 and α−1
4R(ΛS) = 2, respectively

α−1
2R(ΛR) 1 2 4 6

ΛR/ΛL 1.20 × 106 1.23 × 105 1.27 × 103 1.32 × 101

ΛR [GeV] 1.10 × 108 1.12 × 107 1.16 × 105 1.21 × 103

ΛS [GeV] 5.48 × 109 5.59 × 108 5.81 × 106 6.04 × 104

ΛX [GeV] 4.88 × 1014 3.53 × 1013 1.86 × 1014 9.75 × 1013

ΛXR [GeV]
1.39 × 1011

2.69 × 1010
7.29 × 1010

1.41 × 1010
2.01 × 1010

3.90 × 109
5.54 × 109

1.08 × 109

ΛXL [GeV]
1.71 × 1018

8.83 × 1018
1.71 × 1018

8.83 × 1018
1.71 × 1018

8.83 × 1018
1.71 × 1018

8.83 × 1018

where we have used the values of bi given in Table 2 and
the same input values of α−1

1 (ΛL), α−1
2 (ΛL) and α−1

3 (ΛL)
as used in (3.20). For ΛS/ΛR = 50, the relation (4.24)
leads to

log
ΛR

ΛL
= 7.071 − 0.9915 α−1

2R(ΛR), (4.25)

so that, for α−1
2R(ΛR) ≥ 1, we obtain the constraint

κ ≡ ΛR/ΛL ≤ 1.20 × 106. (4.26)

Similarly, we can obtain the constraint for ΛX/ΛS:

log
ΛX

ΛS
= 4.098 + 0.8517 α−1

2R(ΛR). (4.27)

We show the values of ΛR, ΛS and ΛX for the typical
values of α−1

2R(ΛR) in Table 3. The values of ΛXL and ΛXR

depend not only on the input value of α−1
2R(ΛR) but also

on that of α−1
4R(ΛS), because

α−1
4R(ΛS) = α−1

2R(ΛS) + (bIII
2 − bIII

4 )
1
2π

ln
ΛXR

ΛS

=
1
2
[
α−1

2R(ΛS) − α−1
2L (ΛS) + α−1

3 (ΛS)
]

+ (bIII
4 − bIII

4 )
1
2π

ln
ΛX

ΛXR
(4.28)

= −3.785 − 0.1964 α−1
2R(ΛR) + 1.405 log

ΛX

ΛXR
,

i.e.,

log
ΛX

ΛXR
= 2.694 + 0.1398 α−1

2R(ΛR) + 0.7118 α−1
4R(ΛS),

(4.29)
where we have used ΛS/ΛR = 50. For α−1

2R(ΛR) ≥ 1 and
α−1

4R(ΛS) ≥ 1, the relation (4.29) gives the constraint

ΛXL/ΛXR ≥ 1.26 × 107. (4.30)

The relation (4.29) leads us to conclude that a model with
ΛXL = ΛXR is ruled out. The values of ΛXR and ΛXL for
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Fig. 1. Behaviors of α′−1
1 (µ) (dotted line) with ΛL < µ ≤ ΛR,

α−1
1 (µ) (dotted line) with ΛR < µ ≤ ΛS, α−1

2L (µ) (solid line)
with ΛL < µ ≤ ΛXL, α−1

2R(µ) (solid line) with ΛR < µ ≤
ΛXR, α−1

3 (µ) (dashed line) with ΛL < µ ≤ ΛS, α′−1
2L (µ) (dotted

line) with ΛS < µ ≤ ΛXL, and α′−1
2R (µ) (dotted line) with

ΛS < µ ≤ ΛXR, α−1
4L (µ) (dotted chain line) with ΛS < µ ≤

ΛXL, and α−1
4R(µ) (dotted chain line) with ΛS < µ ≤ ΛXR,

where ΛL = 91.2GeV, ΛR = 1.10 × 108 GeV, ΛS = 5.48 ×
109 GeV, ΛXR = 1.39 × 1011 GeV and ΛXL = 1.71 × 1018 GeV.
The values α′−1

1 (ΛL) = 59.42, α−1
2L (ΛL) = 29.86, α−1

3 (ΛL) =
8.410, α−1

2R(ΛR) = 1 and α−1
4R(ΛS) = 1 are used as the input

values

typical values of α−1
2R(ΛR) and α−1

4R(ΛS) are also listed in
Table 3.

Considering the present results [14] of the experimental
search for the right-handed weak bosons, we take κ ≡
ΛR/ΛL ≥ 10, so that we conclude that the allowed ranges
of κ, the intermediate energy scale ΛS and the unification
scale ΛX ≡ (ΛXLΛXL)1/2 are

κ = 1.3 × 101–1.2 × 106,

ΛS = (6.0 × 104–5.5 × 109) GeV, (4.31)

ΛX = (9.8 × 1013–4.9 × 1014) GeV,

corresponding to the values α−1
2R(ΛR) = 6–1. The behav-

ior of the gauge coupling constants for a typical case is
illustrated in Fig. 1.

5 Conclusions

In conclusion, in order to examine the idea that the extra
fermions FR and FL in the universal seesaw mass-matrix
model, together with the conventional three families of
quarks and leptons fL and fR, are assigned to (fL+F c

R) ∼

(16, 1) and (fR + F c
L) ∼ (1, 16) of SO(10)L × SO(10)R, we

have investigated the evolution of the gauge coupling con-
stants and intermediate mass scales. Case (A), SO(10)L ×
SO(10)R → [SU(5) × U(1)′]L × [SU(5) × U(1)′]R, is ruled
out because the results are inconsistent with the observed
values of the gauge coupling constants at µ = mZ . Case
(B), SO(10)L × SO(10)R → [SU(2) × SU(2)′ × SU(4)]L ×
[SU(2) × SU(2)′ × SU(4)]R, is allowed for the intermedi-
ate energy scale ΛR ∼ (101 − 106) GeV if we accept a
model with ΛXL 6= ΛXR, where ΛXL and ΛXR are the
unification scales of SO(10)L and SO(10)R, respectively.
We have obtained the allowed ranges κ ' 101–106, ΛS '
(6×104–6×109) GeV, and ΛX = (ΛXLΛXR)1/2 = (5×1014–
1014) GeV corresponding to α−1

2R(ΛR) ' 6–1.
In case (B), since ML ∼ MR ∼ MN ∼ MF (F 6= N),

we see that this gives an effective neutrino-mass matrix
M(νL) ' −mLM−1

L mT
L , so that the conventional neutrino

masses m(νi) are of the order of m(ei)/κ. However, for the
condition α−1

2R(ΛR) ≥ 1, which is a condition leading to a
perturbative model, the value of κ has been constrained
by (4.26), i.e., κ ≤ 1.20×106. This suggests that m(ντ ) ∼
m(τ)/κ ≥ 103 eV. Such a large value of m(ντ ) is unlikely.
Therefore, the straightforward application of case (B) to
the neutrino-mass generation scenario is ruled out.

However, the numerical results in Sect. 4 should not
be taken rigidly, because the calculation was done at one
loop. Moreover, the results are dependent on the input
value ΛR/ΛS. The value ΛR/ΛS = 0.02 has been quoted
from [1], where the value was determined from the ob-
served value of mc/mt on the basis of a specific model
for mL, mR and MF . To be exact, the value 0.02 means
yLvLyRvR/ySvS = 0.02, where the y’s and v’s are the
Yukawa coupling constants and vacuum expectation val-
ues, respectively. Because of the numerical uncertainty of
yL, yR and yS, the numerical results may be changed by
one or two orders. Case (B) still cannot be ruled out.

In the present paper, the cases of a SUSY version of the
model have not been investigated systematically, because
many versions for the energy scale of the SUSY partners
of the super heavy fermions F can be considered. Nev-
ertheless, case (A) can easily be ruled out by a simple
consideration. On the other hand, for case (B), it is a fu-
ture task to decide whether the SUSY version is allowed
or not.

When we take the numerical result of the constraint
(4.26), we can consider a minimum modification of case
(B). In case (B), the Dirac mass matrix MD is gener-
ated by the Higgs scalar ΦV ∼ (1, 2, 4; 1, 2, 4) of [SU(2) ×
SU(2)′ × SU(4)]L × [SU(2) × SU(2)′ × SU(4)]R, while the
Majorana mass matrices ML and MR are generated by the
Higgs scalars ΦL ∼ (1, 1, 10; 1, 1, 1) and ΦR ∼ (1, 1, 1; 1, 1,
10), respectively. We assume that the symmetries SU(4)L
and SU(4)R are broken into [SU(3)×U(1)]L and [SU(3)×
U(1)]R at µ = ΛNL ≡ O(ML) and µ = ΛNR ≡ O(MR),
respectively, and that the energy scales ΛNL and ΛNR are
sufficiently larger than ΛS ≡ O(MD), at which all the
fermions F (not f) have Dirac masses MF and the symme-
tries SU(3)L ×SU(3)R and U(1)L ×U(1)R are broken into
SU(3)L+R ≡ SU(3)c and U(1)L+R ≡ U(1)Y , respectively.
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Then, the neutrino-mass generation scenario is changed
from scenario (b) to scenario (a). Although the expression
of Mν is still given by Mν ' −mLM−1

L mT
L , the suppres-

sion factor for the neutrino masses is changed from 1/κ
to (1/κ)(ΛS/ΛNL). By taking ΛS/ΛNL ∼ 10−3, we can
obtain reasonable values for the neutrino masses in the
case α−1

2R(ΛR) ' 1. Of course, in the modified version with
ΛXL � ΛNL � ΛS, the unification scales of ΛXL and ΛXR
are changed by an order of one or two. However, ΛR and
ΛS are insensitive to the present modification.

In the present paper, we have not discussed the evolu-
tion of the Yukawa coupling constants. The phenomeno-
logical success in [1] has been obtained by taking be = 0,
bu = −1/3 and bd = −eiβd (βd = 18◦), where MF =
m0λfdiag(1, 1, 1 + 3bf ) in the basis in which MF is di-
agonal. The shapes (not the magnitudes) of ME = m0λe

·diag(1, 1, 1) and MU = m0λudiag(1, 1, 0) are almost in-
variant under the evolution, while the shape of MD '
m0λddiag(1, 1,−2) is not invariant. The following prob-
lems among others remain as our future tasks:
(i) What value of bd is favorable at the unification scale
µ = ΛX?
(ii) can we still assert λu ' λd or not?
(iii) can the mass matrix mR still be approximately diag-
onal in the basis in which mL is diagonal? The numerical
results in [1] will be somewhat changed in the present
SO(10)L × SO(10)R model.

In any case, for the universal seesaw mass-matrix model
based on the SO(10)L×SO(10)R unification, if we consider
the symmetry breaking SO(10)L × SO(10)R → [SU(2) ×
SU(2)′ ×SU(4)]L × [SU(2)×SU(2)′ ×SU(4)]R, and we ac-
cept the case ΛXL 6= ΛXR, where ΛXL and ΛXR are the
unification scales of SO(10)L and SO(10)R, respectively,
we can find a solution of the intermediate energy scales
ΛR and ΛS for the unified description of the quark and
lepton mass matrices, where only the top quark mass mt is
given by mt ∼ ΛL in contrast with mq � ΛL (q 6= t), and
the neutrino masses m(νi) are reasonably suppressed com-
pared with the charged-lepton masses m(ei). The model is
worth to be taken seriously as a promising unified model
of the quarks and leptons.
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